Cypress CY7C025AV User Manual

CY7C024AV/024BV/025AV/026AV  
CY7C0241AV/0251AV/036AV  
3.3V 4K/8K/16K x 16/18 Dual-Port  
Static RAM  
Fully asynchronous operation  
Automatic power down  
Features  
True dual-ported memory cells which enable simultaneous  
access of the same memory location  
Expandable data bus to 32 bits, 36 bits or more using Master  
and Slave chip select when using more than one device  
4, 8 or 16K × 16 organization  
On chip arbitration logic  
(CY7C024AV/024BV [1]/ 025AV/026AV)  
4 or 8K × 18 organization (CY7C0241AV/0251AV)  
16K × 18 organization (CY7C036AV)  
0.35 micron CMOS for optimum speed and power  
High speed access: 20 and 25 ns  
Semaphores included to permit software handshaking  
between ports  
INT flag for port-to-port communication  
Separate upper byte and lower byte control  
Pin select for Master or Slave (M/S)  
Low operating power  
Commercial and industrial temperature ranges  
Available in 100-pin Pb-free TQFP and 100-pin TQFP  
Active: ICC = 115 mA (typical)  
Standby: ISB3 = 10 μA (typical)  
Logic Block Diagram  
R/WL  
UBL  
R/WR  
UBR  
CEL  
CER  
LBL  
LBR  
OEL  
OER  
[2]  
8/9  
8/9  
8/9  
[2]  
IO8/9L–IO15/17L  
IO8/9L–IO15/17R  
[3]  
8/9  
IO  
Control  
IO  
Control  
[3]  
IO0L–IO7/8L  
IO0L–IO7/8R  
12/13/14  
12/13/14  
[4]  
A0R–A11/12/13R  
Address  
Decode  
Address  
Decode  
[4]  
True Dual-Ported  
RAM Array  
A0L–A11/1213L  
[4]  
[4]  
12/13/14  
12/13/14  
A0L–A11/12/13L  
A0R–A11/12/13R  
CER  
CEL  
Interrupt  
Semaphore  
Arbitration  
OEL  
R/WL  
OER  
R/WR  
SEML  
SEMR  
[5]  
[5]  
BUSYL  
INTL  
UBL  
BUSYR  
INTR  
UBR  
LBL  
M/S  
LBR  
Notes  
1. CY7C024AV and CY7C024BV are functionally identical.  
2. IO –IO for x16 devices; IO –IO for x18 devices.  
8
15  
9
17  
3. IO –IO for x16 devices; IO –IO for x18 devices.  
0
7
0
8
4. A –A for 4K devices; A –A for 8K devices; A –A for 16K devices.  
0
11  
0
12  
0
13  
5. BUSY is an output in master mode and an input in slave mode.  
Cypress Semiconductor Corporation  
Document #: 38-06052 Rev. *J  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised December 10, 2008  
         
CY7C024AV/024BV/025AV/026AV  
CY7C0241AV/0251AV/036AV  
Pin Configurations (continued)  
Figure 2. 100-Pin TQFP (Top View)  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
75  
74  
73  
NC  
NC  
NC  
NC  
1
NC  
NC  
2
3
4
IO  
8L  
17L  
11L  
72  
71  
70  
69  
IO  
IO  
IO  
IO  
A
5L  
5
6
7
8
A
4L  
12L  
13L  
A
A
A
3L  
2L  
1L  
0L  
68  
IO  
14L  
67  
66  
GND  
9
A
IO  
IO  
10  
11  
12  
13  
15L  
16L  
INT  
BUSY  
L
65  
64  
63  
62  
L
V
GND  
M/  
BUSY  
CC  
CY7C0241AV (4K × 18)  
CY7C0251AV (8K × 18)  
GND  
IO  
0R  
IO  
1R  
S
14  
61  
60  
59  
R
INT  
15  
16  
17  
R
IO  
2R  
A
A
A
0R  
1R  
V
CC  
3R  
58  
IO  
18  
19  
20  
21  
57  
56  
55  
54  
53  
2R  
3R  
IO  
IO  
IO  
IO  
A
4R  
5R  
6R  
8R  
A
4R  
NC  
22  
23  
NC  
NC  
IO  
17R  
52  
51  
NC  
NC  
24  
25  
NC  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
10099 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
75  
NC  
1
NC  
NC  
NC  
2
3
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
NC  
NC  
A6L  
A5L  
A4L  
A3L  
A2L  
A1L  
A0L  
INT  
BUSY  
GND  
NC  
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
IO10L  
IO11L  
IO12L  
IO13L  
GND  
IO14L  
IO15L  
VCC  
GND  
IO0R  
IO1R  
IO2R  
VCC  
IO3R  
IO4R  
IO5R  
IO6R  
NC  
L
L
CY7C026AV (16K × 16)  
M/  
BUSY  
INT  
S
R
R
A0R  
A1R  
A2R  
A3R  
A4R  
A5R  
NC  
NC  
NC  
NC  
24  
25  
NC  
NC  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
Notes  
8.  
9.  
A
A
on the CY7C0251AV.  
on the CY7C0251AVC.  
12L  
12R  
Document #: 38-06052 Rev. *J  
Page 3 of 19  
   
CY7C024AV/024BV/025AV/026AV  
CY7C0241AV/0251AV/036AV  
Pin Configurations (continued)  
Figure 3. 100-Pin TQFP (Top View)  
100 9998 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
75  
74  
73  
72  
71  
70  
69  
NC  
NC  
NC  
1
NC  
NC  
2
3
4
IO  
8L  
17L  
11L  
A
13L  
IO  
IO  
IO  
IO  
A
5L  
5
6
7
8
A
4L  
12L  
13L  
A
3L  
A
2L  
68  
IO  
14L  
A
1L  
67  
66  
GND  
9
A
0L  
IO  
IO  
10  
11  
12  
13  
15L  
16L  
INT  
BUSY  
GND  
M/S  
L
65  
64  
63  
62  
L
V
CC  
CY7C036AV (16K × 18)  
GND  
IO  
0R  
IO  
1R  
14  
BUSY  
INT  
61  
60  
59  
R
15  
16  
17  
R
IO  
2R  
A
0R  
V
CC  
3R  
A
1R  
58  
IO  
18  
19  
20  
21  
A
2R  
57  
56  
55  
54  
53  
IO  
IO  
IO  
IO  
A
3R  
4R  
5R  
6R  
8R  
A
4R  
A
13R  
22  
23  
NC  
NC  
IO  
17R  
52  
51  
NC  
NC  
24  
25  
NC  
26 27 28 29 30 31 32 3334 35 36 37 38 39 40 41 42 43 44 45 46 4748 49 50  
Selection Guide  
CY7C024AV/024BV/025AV/026AV CY7C024AV/024BV/025AV/026AV  
Parameter  
CY7C0241AV/0251AV/036AV  
-20  
CY7C0241AV/0251AV/036AV  
-25  
Unit  
Maximum Access Time  
20  
120  
35  
25  
115  
30  
ns  
Typical Operating Current  
mA  
mA  
Typical Standby Current for ISB1  
(Both ports TTL Level)  
Typical Standby Current for ISB3  
(Both ports CMOS Level)  
10  
10  
μA  
Document #: 38-06052 Rev. *J  
Page 4 of 19  
CY7C024AV/024BV/025AV/026AV  
CY7C0241AV/0251AV/036AV  
Pin Definitions  
Left Port  
CEL  
Right Port  
CER  
Description  
Chip Enable  
R/WL  
OEL  
R/WR  
Read and Write Enable  
Output Enable  
OER  
A0L–A13L  
IO0L–IO17L  
SEML  
UBL  
A0R–A13R  
IO0R–IO17R  
SEMR  
UBR  
Address (A0–A11 for 4K devices; A0–A12 for 8K devices; A0–A13 for 16K)  
Data Bus Input and Output  
Semaphore Enable  
Upper Byte Select (IO8–IO15 for x16 devices; IO9–IO17 for x18 devices)  
LBL  
LBR  
Lower Byte Select (IO0–IO7 for x16 devices; IO0–IO8 for x18 devices)  
INTL  
INTR  
Interrupt Flag  
Busy Flag  
BUSYL  
M/S  
BUSYR  
Master or Slave Select  
Power  
VCC  
GND  
Ground  
NC  
No Connect  
accessed by the other port. The Interrupt flag (INT) permits  
communication between ports or systems by means of a mail  
Architecture  
box. The semaphores are used to pass a flag, or token, from one  
port to the other to indicate that a shared resource is in use. The  
semaphore logic has eight shared latches. Only one side can  
control the latch (semaphore) at any time. Control of a  
semaphore indicates that a shared resource is in use. An  
automatic power down feature is controlled independently on  
each port by a Chip Select (CE) pin.  
The  
CY7C024AV/024BV/025AV/026AV  
and  
CY7C0241AV/0251AV/036AV consist of an array of 4K, 8K, and  
16K words of 16 and 18 bits each of dual-port RAM cells, IO and  
address lines, and control signals (CE, OE, RW). These control pins  
permit independent access for reads or writes to any location in  
memory. To handle simultaneous writes and reads to the same  
location, a BUSY pin is provided on each port. Two Interrupt (INT)  
pins can be used for port to port communication. Two Semaphore  
(SEM) control pins are used for allocating shared resources. With  
the M/S pin, the devices can function as a master (BUSY pins are  
outputs) or as a slave (BUSY pins are inputs). They also have an  
automatic power down feature controlled by CE. Each port has its  
own output enable control (OE), which enables data to be read from  
the device.  
The  
CY7C024AV/024BV/025AV/026AV  
and  
CY7C0241AV0251AV/036AV are available in 100-pin Pb-free Thin  
Quad Flat Pack (TQFP) and 100-pin TQFP.  
Write Operation  
Data must be set up for a duration of tSD before the rising edge  
of RW to guarantee a valid write. A write operation is controlled  
by either the RW pin (see Figure 8 on page 12) or the CE pin (see  
Figure 9 on page 12). Required inputs for non-contention opera-  
tions are summarized in Table 1 on page 7.  
Functional Description  
The  
CY7C024AV/024BV/025AV/026AV  
and  
CY7C0241AV/0251AV/036AV are low power CMOS 4K, 8K, and  
16K ×16/18 dual port static RAMs. Various arbitration schemes are  
included on the devices to handle situations when multiple  
processors access the same piece of data. There are two ports  
permitting independent, asynchronous access for reads and writes  
to any location in memory. The devices can be used as standalone  
16 or18-bit dual port static RAMs or multiple devices can be  
combined to function as a 32 or 36-bit or wider master and slave  
dual port static RAM. An M/S pin is provided for implementing 32 or  
36-bit or wider memory applications. It does not need separate  
master and slave devices or additional discrete logic. Application  
areas include interprocessor/multiprocessor designs, communica-  
tions status buffering, and dual port video and graphics memory.  
If a location is being written to by one port and the opposite port  
tries to read that location, there must be a port to port flowthrough  
delay before the data is read on the output; otherwise the data  
read is not deterministic. Data is valid on the port tDDD after the  
data is presented on the other port.  
Read Operation  
When reading the device, the user must assert both the OE and  
CE pins. Data is available tACE after CE or tDOE after OE is  
asserted. If the user wants to access a semaphore flag, then the  
SEM pin and OE must be asserted.  
Interrupts  
Each port has independent control pins: Chip Enable (CE), Read  
or Write Enable (R/W), and Output Enable (OE). Two flags are  
provided on each port (BUSY and INT). BUSY signals that the  
port is trying to access the same location currently being  
The upper two memory locations are for message passing. The  
highest  
memory  
location  
(FFF  
for  
the  
CY7C024AV/024BV/41AV/1FFF for the CY7C025AV/51AV,  
Document #: 38-06052 Rev. *J  
Page 5 of 19  
 
CY7C024AV/024BV/025AV/026AV  
CY7C0241AV/0251AV/036AV  
3FFF for the CY7C026AV/36AV) is the mailbox for the right port  
and the second highest memory location (FFE for the  
CY7C024AV/024BV/41AV/1FFE for the CY7C025AV/51AV,  
3FFE for the CY7C026AV/36AV) is the mailbox for the left port.  
When one port writes to the other port’s mailbox, an interrupt is  
generated to the owner. The interrupt is reset when the owner  
reads the contents of the mailbox. The message is user defined.  
Semaphore Operation  
The CY7C024AV/024BV/025AV/026AV  
and  
CY7C0241AV/0251AV/036AV provide eight semaphore latches,  
which are separate from the dual port memory locations.  
Semaphores are used to reserve resources that are shared  
between the two ports. The state of the semaphore indicates that  
a resource is in use. For example, if the left port wants to request  
a given resource, it sets a latch by writing a zero to a semaphore  
location. The left port then verifies its success in setting the latch  
by reading it. After writing to the semaphore, SEM or OE must  
be deasserted for tSOP before attempting to read the semaphore.  
The semaphore value is available tSWRD + tDOE after the rising  
edge of the semaphore write. If the left port was successful  
(reads a zero), it assumes control of the shared resource.  
Otherwise (reads a one), it assumes the right port has control  
and continues to poll the semaphore. When the right side has  
relinquished control of the semaphore (by writing a one), the left  
side succeeds in gaining control of the semaphore. If the left side  
no longer requires the semaphore, a one is written to cancel its  
request.  
Each port can read the other port’s mailbox without resetting the  
interrupt. The active state of the busy signal (to a port) prevents  
the port from setting the interrupt to the winning port. Also, an  
active busy to a port prevents that port from reading its own  
mailbox and, thus, resetting the interrupt to it.  
If an application does not require message passing, do not  
connect the interrupt pin to the processor’s interrupt request  
input pin.  
The operation of the interrupts and their interaction with Busy are  
summarized in Table 2 on page 7.  
Busy  
The  
CY7C024AV/024BV/025AV/026AV  
and  
Semaphores are accessed by asserting SEM LOW. The SEM  
pin functions as a chip select for the semaphore latches (CE  
must remain HIGH during SEM LOW). A0–2 represents the  
semaphore address. OE and RW are used in the same manner  
as a normal memory access. When writing or reading a  
semaphore, the other address pins have no effect.  
CY7C0241AV/0251AV/036AV provide on-chip arbitration to resolve  
simultaneous memory location access (contention). If both ports’  
CEs are asserted and an address match occurs within tPS of each  
other, the busy logic determines which port has access. If tPS is  
violated, one port definitely gains permission to the location, but it is  
not predictable which port gets that permission. BUSY is asserted  
tBLA after an address match or tBLC after CE is taken LOW.  
When writing to the semaphore, only IO0 is used. If a zero is  
written to the left port of an available semaphore, a one appears  
at the same semaphore address on the right port. That  
semaphore can now only be modified by the side showing zero  
(the left port in this case). If the left port now relinquishes control  
by writing a one to the semaphore, the semaphore is set to one  
for both sides. However, if the right port had requested the  
semaphore (written a zero) while the left port had control, the  
right port would immediately own the semaphore as soon as the  
left port released it. Table 3 on page 7 shows sample semaphore  
operations.  
Master/Slave  
A M/S pin helps to expand the word width by configuring the  
device as a master or a slave. The BUSY output of the master is  
connected to the BUSY input of the slave. This enables the  
device to interface to a master device with no external compo-  
nents. Writing to slave devices must be delayed until after the  
BUSY input has settled (tBLC or tBLA). Otherwise, the slave chip  
may begin a write cycle during a contention situation. When tied  
HIGH, the M/S pin enables the device to be used as a master  
and, therefore, the BUSY line is an output. BUSY can then be  
used to send the arbitration outcome to a slave.  
When reading a semaphore, all 16 and 18 data lines output the  
semaphore value. The read value is latched in an output register  
to prevent the semaphore from changing state during a write  
from the other port. If both ports attempt to access the  
semaphore within tSPS of each other, the semaphore is definitely  
obtained by one of them. But there is no guarantee which side  
controls the semaphore.  
Document #: 38-06052 Rev. *J  
Page 6 of 19  
CY7C024AV/024BV/025AV/026AV  
CY7C0241AV/0251AV/036AV  
Table 1. Non-Contending Read/Write  
Inputs  
Outputs  
Operation  
CE  
H
X
L
R/W  
X
OE  
X
X
X
X
X
L
UB  
X
H
L
LB  
X
H
H
L
SEM  
H
H
H
H
H
H
H
H
X
IO9IO17  
High Z  
IO0IO8  
High Z  
Deselected: Power Down  
Deselected: Power Down  
Write to Upper Byte Only  
Write to Lower Byte Only  
Write to Both Bytes  
X
High Z  
High Z  
L
Data In  
High Z  
High Z  
L
L
H
L
Data In  
Data In  
High Z  
L
L
L
Data In  
Data Out  
High Z  
L
H
H
H
X
L
H
L
Read Upper Byte Only  
Read Lower Byte Only  
Read Both Bytes  
L
L
H
L
Data Out  
Data Out  
High Z  
L
L
L
Data Out  
High Z  
X
H
X
H
H
L
X
X
H
X
X
X
H
X
Outputs Disabled  
H
H
L
Data Out  
Data Out  
Data In  
Data Out  
Data Out  
Data In  
Read Data in Semaphore Flag  
Read Data in Semaphore Flag  
Write DIN0 into Semaphore Flag  
L
L
X
L
X
X
H
H
L
Data In  
Data In  
Write DIN0 into Semaphore Flag  
L
L
X
X
X
X
L
X
L
L
L
Not Allowed  
Not Allowed  
X
Table 2. Interrupt Operation Example (assumes BUSYL = BUSYR = HIGH)[10]  
Left Port  
Right Port  
Function  
R/WL CEL  
OEL  
X
A0L–13L  
X
INTL R/WR CER  
OER  
X
A0R–13R  
INTR  
Set Right INTR Flag  
Reset Right INTR Flag  
Set Left INTL Flag  
Reset Left INTL Flag  
L
X
X
X
L
X
X
L
X
X
X
L
X
L
L
X
X
X
X
L
FFF (or 1/3FFF) H[11]  
X
X
X
1FFE (or 1/3FFE)  
X
X
X
L
X
X
Table 3. Semaphore Operation Example  
Function IO0IO17 Left IO0IO17 Right  
Status  
No action  
1
0
0
1
1
0
1
1
1
0
1
1
1
1
0
0
1
1
0
1
1
1
Semaphore-free  
Left Port has semaphore token  
Left port writes 0 to semaphore  
Right port writes 0 to semaphore  
Left port writes 1 to semaphore  
Left port writes 0 to semaphore  
Right port writes 1 to semaphore  
Left port writes 1 to semaphore  
Right port writes 0 to semaphore  
Right port writes 1 to semaphore  
Left port writes 0 to semaphore  
No change. Right side has no write access to semaphore  
Right port obtains semaphore token  
No change. Left port has no write access to semaphore  
Left port obtains semaphore token  
Semaphore-free  
Right port has semaphore token  
Semaphore free  
Left port has semaphore token  
Semaphore-free  
Left port writes 1 to semaphore  
Notes  
10. See Functional Description on page 5 for specific highest memory locations by device.  
11. If BUSY =L, then no change.  
R
12. If BUSY =L, then no change.  
L
13. See Functional Description on page 5 for specific addresses by device.  
Document #: 38-06052 Rev. *J  
Page 7 of 19  
             
CY7C024AV/024BV/025AV/026AV  
CY7C0241AV/0251AV/036AV  
DC Input Voltage[15]............................... –0.5V to VCC + 0.5V  
Output Current into Outputs (LOW).............................20 mA  
Static Discharge Voltage.......................................... > 2001V  
Latch-up Current.................................................... > 200 mA  
Maximum Ratings  
Exceeding maximum ratings[14] may shorten the useful life of the  
device. User guidelines are not tested.  
Storage Temperature ................................. –65°C to +150°C  
Ambient Temperature with  
Power Applied ............................................ –55°C to +125°C  
Operating Range  
Range  
Commercial  
Industrial[16]  
Ambient Temperature  
0°C to +70°C  
VCC  
Supply Voltage to Ground Potential............... –0.5V to +4.6V  
3.3V ± 300 mV  
3.3V ± 300 mV  
DC Voltage Applied to  
Outputs in High-Z State .........................0.5V to VCC + 0.5V  
–40°C to +85°C  
Electrical Characteristics  
Over the Operating Range  
CY7C024AV/024BV/025AV/026AV  
CY7C0241AV/0251AV/036AV  
Parameter  
Description  
Unit  
-20  
-25  
Min  
Typ  
Max  
Min  
Typ  
Max  
VOH  
Output HIGH Voltage (VCC=3.3V)  
Output LOW Voltage  
2.4  
2.4  
V
VOL  
VIH  
VIL  
IOZ  
IIX  
0.4  
0.4  
V
Input HIGH Voltage  
2.0  
–0.3[17]  
–10  
2.0  
V
Input LOW Voltage  
0.8  
10  
0.8  
10  
V
Output Leakage Current  
Input Leakage Current  
Operating Current (VCC = Max.,  
–10  
–10  
μA  
μA  
mA  
mA  
mA  
mA  
mA  
mA  
μA  
μA  
mA  
mA  
–10  
10  
10  
ICC  
Com’l.  
Ind.[16]  
Com’l.  
Ind.[16]  
Com’l.  
Ind.[16]  
120  
35  
175  
115  
135  
30  
40  
65  
75  
10  
10  
60  
70  
165  
185  
40  
I
OUT = 0 mA) Outputs Disabled  
ISB1  
ISB2  
ISB3  
ISB4  
Standby Current (Both Ports TTL Level)  
CEL & CER VIH, f = fMAX  
45  
110  
500  
95  
50  
Standby Current (One Port TTL Level)  
CEL | CER VIH, f = fMAX  
75  
95  
105  
500  
500  
80  
Standby Current (Both Ports CMOS Level) Com’l.  
CEL & CER VCC0.2V, f = 0  
10  
Ind.[16]  
Standby Current (One Port CMOS Level)  
Com’l.  
Ind.[16]  
70  
CEL | CER VIH, f = fMAX  
90  
Capacitance  
Parameter[19]  
Description  
Input Capacitance  
Output Capacitance  
Test Conditions  
TA = 25°C, f = 1 MHz,  
CC = 3.3V  
Max  
10  
Unit  
CIN  
pF  
pF  
V
COUT  
10  
Notes  
14. The voltage on any input or IO pin cannot exceed the power pin during power up.  
15. Pulse width < 20 ns.  
16. Industrial parts are available in CY7C026AV and CY7C036AV only.  
17. VIL > –1.5V for pulse width less than 10ns.  
18. f  
= 1/t = All inputs cycling at f = 1/t (except output enable). f = 0 means no address or control lines change. This applies only to inputs at CMOS level  
MAX  
RC RC  
standby I  
.
SB3  
19. Tested initially and after any design or process changes that may affect these parameters.  
Document #: 38-06052 Rev. *J  
Page 8 of 19  
           
CY7C024AV/024BV/025AV/026AV  
CY7C0241AV/0251AV/036AV  
Figure 4. AC Test Loads and Waveforms  
3.3V  
3.3V  
R
TH  
= 250Ω  
R1 = 590Ω  
OUTPUT  
C = 30pF  
OUTPUT  
C = 30 pF  
R1 = 590Ω  
OUTPUT  
C = 5 pF  
R2 = 435Ω  
R2 = 435Ω  
V
TH  
= 1.4V  
(a) Normal Load (Load 1)  
(c) Three-State Delay (Load 2)  
(Used for tLZ, tHZ, tHZWE, and tLZWE  
(b) Thévenin Equivalent (Load 1)  
ALL INPUTPULSES  
including scope and jig)  
3.0V  
GND  
90%  
90%  
10%  
3 ns  
10%  
3 ns  
Switching Characteristics  
Over the Operating Range [20]  
CY7C024AV/024BV/025AV/026AV  
CY7C0241AV/0251AV/036AV  
Parameter  
Description  
Unit  
-20  
-25  
Min  
20  
3
Max  
Min  
25  
3
Max  
Read Cycle  
tRC  
Read Cycle Time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAA  
Address to Data Valid  
Output Hold From Address Change  
CE LOW to Data Valid  
OE LOW to Data Valid  
OE Low to Low Z  
20  
25  
tOHA  
[21]  
tACE  
tDOE  
tLZOE  
20  
12  
25  
13  
3
3
0
3
3
0
tHZOE  
OE HIGH to High Z  
12  
12  
15  
15  
tLZCE  
CE LOW to Low Z  
tHZCE  
CE HIGH to High Z  
tPU  
tPD  
CE LOW to Power Up  
CE HIGH to Power Down  
Byte Enable Access Time  
20  
20  
25  
25  
tABE  
Write Cycle  
tWC  
Write Cycle Time  
20  
15  
15  
0
25  
20  
20  
0
ns  
ns  
ns  
ns  
ns  
[21]  
tSCE  
tAW  
tHA  
CE LOW to Write End  
Address Valid to Write End  
Address Hold From Write End  
Address Setup to Write Start  
[21]  
tSA  
0
0
Notes  
20. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I /I  
OI OH  
and 30 pF load capacitance.  
21. To access RAM, CE = L, UB = L, SEM = H. To access semaphore, CE = H and SEM = L. Either condition must be valid for the entire t  
time.  
SCE  
22. At any given temperature and voltage condition for any given device, t  
23. Test conditions used are Load 3.  
is less than t  
and t  
is less than t  
.
HZCE  
LZCE  
HZOE  
LZOE  
24. This parameter is guaranteed but not tested. For information on port to port delay through RAM cells from writing port to reading port, refer to Figure 12.  
Document #: 38-06052 Rev. *J  
Page 9 of 19  
           
CY7C024AV/024BV/025AV/026AV  
CY7C0241AV/0251AV/036AV  
Switching Characteristics  
Over the Operating Range (continued)[20]  
CY7C024AV/024BV/025AV/026AV  
CY7C0241AV/0251AV/036AV  
Unit  
Parameter  
Description  
-20  
-25  
Min  
15  
15  
0
Max  
Min  
20  
15  
0
Max  
tPWE  
tSD  
Write Pulse Width  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Data Setup to Write End  
Data Hold From Write End  
R/W LOW to High Z  
tHD  
[23, 24]  
tHZWE  
12  
15  
tLZWE  
R/W HIGH to Low Z  
3
0
tWDD  
Write Pulse to Data Delay  
Write Data Valid to Read Data Valid  
45  
30  
50  
35  
[25]  
tDDD  
Busy Timing[26]  
tBLA  
BUSY LOW from Address Match  
BUSY HIGH from Address Mismatch  
BUSY LOW from CE LOW  
20  
20  
20  
17  
20  
20  
20  
17  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tBHA  
tBLC  
tBHC  
tPS  
BUSY HIGH from CE HIGH  
Port Setup for Priority  
5
0
5
0
tWB  
R/W HIGH after BUSY (Slave)  
R/W HIGH after BUSY HIGH (Slave)  
BUSY HIGH to Data Valid  
tWH  
15  
17  
tBDD  
Interrupt Timing[26]  
tINS  
tINR  
Semaphore Timing  
20  
25  
INT Set Time  
20  
20  
20  
20  
ns  
ns  
INT Reset Time  
tSOP  
tSWRD  
tSPS  
SEM Flag Update Pulse (OE or SEM)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
SEM Address Access Time  
10  
5
12  
5
ns  
ns  
ns  
ns  
5
5
tSAA  
20  
25  
Data Retention Mode  
Timing  
The  
CY7C024AV/024BV/025AV/026AV  
and  
Data Retention Mode  
3.0V  
CY7C0241AV/0251AV/036AV are designed for battery backup.  
Data retention voltage and supply current are guaranteed over  
temperature. The following rules ensure data retention:  
V
CC  
3.0V  
V
CC  
> 2.0V  
t
RC  
1. Chip Enable (CE) must be held HIGH during data retention,  
within VCC to VCC – 0.2V.  
V
CC  
to V – 0.2V  
CC  
V
IH  
CE  
2. CE must be kept between VCC – 0.2V and 70 percent of VCC  
during the power up and power down transitions.  
3. The RAM can begin operation >tRC after VCC reaches the  
minimum operating voltage (3.0V).  
Parameter  
Test Conditions[28]  
at VCCDR = 2V  
Max  
Unit  
ICCDR1  
50  
μA  
Notes  
25. For information on port to port delay through RAM cells from writing port to reading port, refer to Figure 12.  
26. Test conditions used are Load 2.  
27. t  
is a calculated parameter and is the greater of t  
– t  
(actual) or t  
– t (actual).  
BDD  
WDD  
PWE  
DDD SD  
28. CE = V , V = GND to V , T = 25°C. This parameter is guaranteed but not tested.  
CC  
in  
CC  
A
Document #: 38-06052 Rev. *J  
Page 10 of 19  
       
CY7C024AV/024BV/025AV/026AV  
CY7C0241AV/0251AV/036AV  
Switching Waveforms  
Figure 5. Read Cycle No. 1 (Either Port Address Access)[29, 30, 31]  
t
RC  
ADDRESS  
DATA OUT  
t
AA  
t
t
OHA  
OHA  
PREVIOUS DATAVALID  
DATA VALID  
Figure 6. Read Cycle No. 2 (Either Port CE/OE Access)[29, 32, 33]  
t
ACE  
CE and  
LB or UB  
t
HZCE  
t
DOE  
OE  
t
HZOE  
t
LZOE  
DATA VALID  
DATA OUT  
t
LZCE  
t
PU  
t
PD  
I
CC  
CURRENT  
I
SB  
Figure 7. Read Cycle No. 3 (Either Port)[29, 31, 32, 33]  
t
RC  
ADDRESS  
UB or LB  
t
AA  
t
OHA  
t
t
HZCE  
t
t
LZCE  
LZCE  
t
ABE  
CE  
HZCE  
t
ACE  
DATA OUT  
Notes  
29. R/W is HIGH for read cycles.  
30. Device is continuously selected CE = V and UB or LB = V . This waveform cannot be used for semaphore reads.  
IL  
IL  
31. OE = V .  
IL  
32. Address valid prior to or coincident with CE transition LOW.  
33. To access RAM, CE = V , UB or LB = V , SEM = V . To access semaphore, CE = V , SEM = V .  
IL  
IL  
IH  
IH  
IL  
Document #: 38-06052 Rev. *J  
Page 11 of 19  
         
CY7C024AV/024BV/025AV/026AV  
CY7C0241AV/0251AV/036AV  
Switching Waveforms (continued)  
Figure 8. Write Cycle No. 1: R/W Controlled Timing[34, 35, 36, 37]  
t
WC  
ADDRESS  
OE  
t
HZOE  
t
AW  
CE  
PWE  
t
t
t
HA  
SA  
R/W  
DATAOUT  
DATA IN  
HZWE  
t
t
LZWE  
t
t
HD  
SD  
Figure 9. Write Cycle No. 2: CE Controlled Timing[34, 35, 36, 42]  
t
WC  
ADDRESS  
t
AW  
CE  
t
t
t
HA  
SA  
SCE  
R/W  
t
t
SD  
HD  
DATA IN  
Notes  
34. R/W or CE must be HIGH during all address transitions.  
35. A write occurs during the overlap (t or t ) of a LOW CE or SEM and a LOW UB or LB.  
SCE  
PWE  
36. t is measured from the earlier of CE or R/W or (SEM or R/W) going HIGH at the end of write cycle.  
HA  
37. If OE is LOW during a R/W controlled write cycle, the write pulse width must be the larger of t  
or (t  
+ t ) to enable the IO drivers to turn off and  
PWE  
HZWE SD  
data to be placed on the bus for the required t . If OE is HIGH during an R/W controlled write cycle, this requirement does not apply and the write pulse can  
SD  
be as short as the specified t  
.
PWE  
38. To access RAM, CE = V , SEM = V  
.
IH  
IL  
39. To access upper byte, CE = V , UB = V , SEM = V .  
IL  
IL  
IL  
IL  
IH  
IH  
To access lower byte, CE = V , LB = V , SEM = V .  
40. Transition is measured ±500 mV from steady state with a 5 pF load (including scope and jig). This parameter is sampled and not 100 percent tested.  
41. During this period, the IO pins are in the output state, and input signals must not be applied.  
42. If the CE or SEM LOW transition occurs simultaneously with or after the R/W LOW transition, the outputs remain in the high impedance state.  
Document #: 38-06052 Rev. *J  
Page 12 of 19