Cypress Computer Hardware CY14B102L User Manual

PRELIMINARY  
CY14B102L, CY14B102N  
2 Mbit (256K x 8/128K x 16) nvSRAM  
Features  
Functional Description  
20 ns, 25 ns, and 45 ns Access Times  
The Cypress CY14B102L/CY14B102N is a fast static RAM, with  
a nonvolatile element in each memory cell. The memory is  
Internally organized as 256K x 8 (CY14B102L) or 128K x 16  
(CY14B102N)  
organized as 256K bytes of 8 bits each or 128K words of 16 bits  
each. The embedded nonvolatile elements incorporate  
QuantumTrap technology, producing the world’s most reliable  
nonvolatile memory. The SRAM provides infinite read and write  
cycles, while independent nonvolatile data resides in the highly  
reliable QuantumTrap cell. Data transfers from the SRAM to the  
nonvolatile elements (the STORE operation) takes place  
automatically at power down. On power up, data is restored to  
the SRAM (the RECALL operation) from the nonvolatile memory.  
Both the STORE and RECALL operations are also available  
under software control.  
Hands off Automatic STORE on power down with only a small  
Capacitor  
®
STORE to QuantumTrap nonvolatile elements initiated by  
®
software, device pin, or AutoStore on power down  
RECALL to SRAM initiated by software or power up  
Infinite Read, Write, and Recall Cycles  
200,000 STORE cycles to QuantumTrap  
20 year data retention  
Single 3V +20% to -10% operation  
Commercial, Industrial and Automotive Temperatures  
48-ball FBGA and 44/54-pin TSOP - II packages  
Pb-free and RoHS compliance  
9&$3  
9&&  
Logic Block Diagram[1, 2, 3]  
4XDWUXPꢀ7UDS  
ꢁꢂꢃꢄꢀ;ꢀꢅꢂꢁꢃ  
$
32:(5  
5
&21752/  
$
2
6725(  
$
$
$
$
$
$
$
$
:
5(&$//  
6725(ꢆ5(&$//  
&21752/  
'
(
&
2
'
(
5
+6%  
67$7,&ꢀ5$0  
$55$<  
ꢁꢂꢃꢄꢀ;ꢀꢅꢂꢁꢃ  
62)7:$5(  
'(7(&7  
$ꢅꢃꢀꢋꢀ$ꢁ  
ꢅꢌ  
'4ꢂ  
'4ꢅ  
'4ꢁ  
'4ꢈ  
,
'4ꢃ  
'4ꢉ  
'4ꢊ  
1
3
8
7
%
8
)
)
(
5
6
'4ꢌ  
&2/801ꢀ,ꢆ2  
'4ꢄ  
'4ꢇ  
'4ꢅꢂ  
2(  
&2/801ꢀ'(&  
:(  
'4ꢅꢅ  
'4ꢅꢁ  
'4ꢅꢈ  
'4ꢅꢃ  
&(  
%/(  
$
$
$
$
$
$
$
$
ꢅꢊ  
ꢅꢅ  
ꢅꢂ  
ꢅꢁ  
ꢅꢈ  
ꢅꢃ  
ꢅꢉ  
'4ꢅꢉ  
%+(  
Note  
1. Address A - A for x8 configuration and Address A - A for x16 configuration.  
0
17  
0
16  
2. Data DQ - DQ for x8 configuration and Data DQ - DQ for x16 configuration.  
0
7
0
15  
3. BHE and BLE are applicable for x16 configuration only.  
Cypress Semiconductor Corporation  
Document #: 001-45754 Rev. *B  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised November 10, 2008  
 
     
PRELIMINARY  
CY14B102L, CY14B102N  
Pinouts (continued)  
Figure 3. Pin Diagram - 54 Pin TSOP II (x16)  
[6]  
NC  
A
0
54  
53  
52  
51  
50  
49  
1
2
3
NC  
NC  
A
A
1
4
16  
A
2
A
15  
OE  
5
A
3
6
48  
47  
46  
45  
A
BHE  
7
8
9
10  
11  
12  
13  
14  
4
CE  
DQ0  
DQ1  
BLE  
DQ15  
DQ14  
DQ13  
DQ12  
(x16)  
DQ2  
DQ3  
44  
43  
42  
41  
40  
39  
(Not to Scale)  
V
CC  
V
SS  
V
SS  
V
CC  
DQ4  
DQ5  
DQ11  
DQ10  
DQ9  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
38  
37  
36  
35  
DQ6  
DQ7  
WE  
DQ8  
V
CAP  
A
5
A
14  
34  
33  
32  
31  
30  
29  
28  
A
6
A
13  
A
A
7
A
8
12  
A
11  
A
10  
A
9
NC  
NC  
NC  
25  
26  
27  
NC  
NC  
NC  
Pin Definitions  
Pin Name  
IO Type  
Description  
A – A  
Input  
Address Inputs Used to Select one of the 262,144 bytes of the nvSRAM for x8 Configuration.  
Address Inputs Used to Select one of the 131,072 words of the nvSRAM for x16 Configuration.  
0
17  
16  
A – A  
0
DQ – DQ  
Input/Output Bidirectional Data IO Lines for x8 Configuration. Used as input or output lines depending on  
0
7
operation.  
DQ – DQ  
Bidirectional Data IO Lines for x16 Configuration. Used as input or output lines depending on  
0
15  
operation.  
WE  
Input  
Write Enable Input, Active LOW. When selected LOW, data on the IO pins is written to the specific  
address location.  
Input  
Input  
Chip Enable Input, Active LOW. When LOW, selects the chip. When HIGH, deselects the chip.  
CE  
OE  
Output Enable, Active LOW. The active LOW OE input enables the data output buffers during read  
cycles. IO pins are tri-stated on deasserting OE HIGH.  
Input  
Input  
Byte High Enable, Active LOW. Controls DQ - DQ .  
BHE  
BLE  
15  
8
Byte Low Enable, Active LOW. Controls DQ - DQ .  
7
0
V
Ground  
Ground for the Device. Must be connected to the ground of the system.  
SS  
V
Power Supply Power Supply Inputs to the Device.  
CC  
Input/Output Hardware Store Busy (HSB). When LOW this output indicates that a hardware store is in progress.  
When pulled LOW external to the chip it initiates a nonvolatile STORE operation. A weak internal pull  
up resistor keeps this pin HIGH if not connected (connection optional). After each store operation HSB  
will be driven HIGH for short time with standard output high current.  
HSB  
V
Power Supply AutoStore Capacitor. Supplies power to the nvSRAM during power loss to store data from SRAM to  
CAP  
nonvolatile elements.  
NC  
No Connect No Connect. This pin is not connected to the die.  
Document #: 001-45754 Rev. *B  
Page 3 of 24  
 
PRELIMINARY  
CY14B102L, CY14B102N  
Figure 4 shows the proper connection of the storage capacitor  
(V ) for automatic store operation. Refer to DC Electrical  
Device Operation  
CAP  
The CY14B102L/CY14B102N nvSRAM is made up of two  
functional components paired in the same physical cell. They are  
an SRAM memory cell and a nonvolatile QuantumTrap cell. The  
SRAM memory cell operates as a standard fast static RAM. Data  
in the SRAM is transferred to the nonvolatile cell (the STORE  
operation), or from the nonvolatile cell to the SRAM (the RECALL  
operation). Using this unique architecture, all cells are stored and  
recalled in parallel. During the STORE and RECALL operations,  
SRAM read and write operations are inhibited. The  
CY14B102L/CY14B102N supports infinite reads and writes  
similar to a typical SRAM. In addition, it provides infinite RECALL  
operations from the nonvolatile cells and up to 200K STORE  
page 15 for a complete description of read and write modes.  
CAP  
pin is driven to V by a regulator on the chip. A pull  
CAP  
CC  
up should be placed on WE to hold it inactive during power up.  
This pull up is only effective if the WE signal is tri-state during  
power up. Many MPUs tri-state their controls on power up. This  
should be verified when using the pull up. When the nvSRAM  
comes out of power-on-recall, the MPU must be active or the WE  
held inactive until the MPU comes out of reset.  
To reduce unnecessary nonvolatile stores, AutoStore and  
hardware store operations are ignored unless at least one write  
operation has taken place since the most recent STORE or  
RECALL cycle. Software initiated STORE cycles are performed  
regardless of whether a write operation has taken place. The  
HSB signal is monitored by the system to detect if an AutoStore  
cycle is in progress.  
SRAM Read  
Figure 4. AutoStore Mode  
The CY14B102L/CY14B102N performs a read cycle when CE  
and OE are LOW and WE and HSB are HIGH. The address  
Vcc  
specified on pins A  
or A  
determines which of the 262,144  
0-17  
0-16  
data bytes or 131,072 words of 16 bits each are accessed. Byte  
enables (BHE, BLE) determine which bytes are enabled to the  
output, in the case of 16-bit words. When the read is initiated by  
0.1uF  
an address transition, the outputs are valid after a delay of t  
Vcc  
AA  
(read cycle 1). If the read is initiated by CE or OE, the outputs  
are valid at t or at t , whichever is later (read cycle 2). The  
ACE  
DOE  
data output repeatedly responds to address changes within the  
access time without the need for transitions on any control  
WE  
VCAP  
t
AA  
input pins. This remains valid until another address change or  
until CE or OE is brought HIGH, or WE or HSB is brought LOW.  
VCAP  
VSS  
SRAM Write  
A write cycle is performed when CE and WE are LOW and HSB  
is HIGH. The address inputs must be stable before entering the  
write cycle and must remain stable until CE or WE goes HIGH at  
Hardware STORE Operation  
the end of the cycle. The data on the common IO pins DQ  
0–15  
[7]  
are written into the memory if the data is valid t before the end  
The CY14B102L/CY14B102N provides the HSB pin to control  
and acknowledge the STORE operations. Use the HSB pin to  
request a hardware STORE cycle. When the HSB pin is driven  
LOW, the CY14B102L/CY14B102N conditionally initiates a  
SD  
of a WE controlled write or before the end of an CE controlled  
write. The Byte Enable inputs (BHE, BLE) determine which bytes  
are written, in the case of 16-bit words. It is recommended that  
OE be kept HIGH during the entire write cycle to avoid data bus  
contention on common IO lines. If OE is left LOW, internal  
STORE operation after t  
. An actual STORE cycle only  
DELAY  
begins if a write to the SRAM has taken place since the last  
STORE or RECALL cycle. The HSB pin also acts as an open  
drain driver that is internally driven LOW to indicate a busy  
condition when the STORE (initiated by any means) is in  
progress.  
circuitry turns off the output buffers t  
after WE goes LOW.  
HZWE  
AutoStore Operation  
SRAM read and write operations that are in progress when HSB  
is driven LOW by any means are given time to complete before  
the STORE operation is initiated. After HSB goes LOW, the  
CY14B102L/CY14B102N continues SRAM operations for  
The CY14B102L/CY14B102N stores data to the nvSRAM using  
one of the following three storage operations: Hardware Store  
activated by HSB; Software Store activated by an address  
sequence; AutoStore on device power down. The AutoStore  
operation is a unique feature of QuantumTrap technology and is  
enabled by default on the CY14B102L/CY14B102N.  
t
. If a write is in progress when HSB is pulled LOW it is  
DELAY  
enabled a time, t  
to complete. However, any SRAM write  
DELAY  
cycles requested after HSB goes LOW are inhibited until HSB  
returns HIGH. In case the write latch is not set, HSB will not be  
driven LOW by the CY14B102L/CY14B102N but any SRAM  
read and write cycles are inhibited until HSB is returned HIGH by  
MPU or other external source.  
During a normal operation, the device draws current from V to  
CC  
charge a capacitor connected to the V  
pin. This stored  
CAP  
charge is used by the chip to perform a single STORE operation.  
If the voltage on the V pin drops below V , the part  
CC  
SWITCH  
automatically disconnects the V  
pin from V . A STORE  
CAP  
CC  
During any STORE operation, regardless of how it is initiated,  
the CY14B102L/CY14B102N continues to drive the HSB pin  
LOW, releasing it only when the STORE is complete. Upon  
operation is initiated with power provided by the V  
capacitor.  
CAP  
Document #: 001-45754 Rev. *B  
Page 4 of 24  
 
 
PRELIMINARY  
CY14B102L, CY14B102N  
completion  
of  
the  
STORE  
operation,  
the  
The software sequence may be clocked with CE controlled reads  
or OE controlled reads. After the sixth address in the sequence  
is entered, the STORE cycle commences and the chip is  
disabled. HSB will be driven LOW. It is important to use read  
cycles and not write cycles in the sequence, although it is not  
necessary that OE be LOW for a valid sequence. After the  
CY14B102L/CY14B102N remains disabled until the HSB pin  
returns HIGH. Leave the HSB unconnected if it is not used.  
Hardware RECALL (Power Up)  
During power up or after any low power condition  
t
cycle time is fulfilled, the SRAM is activated again for the  
STORE  
(V < V  
), an internal RECALL request is latched. When  
CC  
SWITCH  
read and write operation.  
V
again exceeds the sense voltage of V  
, a RECALL  
to complete.  
CC  
SWITCH  
cycle is automatically initiated and takes t  
HRECALL  
Software RECALL  
During this time, HSB will be driven LOW by the HSB driver.  
Transfer the data from the nonvolatile memory to the SRAM with  
a software address sequence. A software RECALL cycle is  
initiated with a sequence of read operations in a manner similar  
to the software STORE initiation. To initiate the RECALL cycle,  
the following sequence of CE controlled read operations must be  
performed.  
Software STORE  
Transfer data from the SRAM to the nonvolatile memory with a  
software address sequence. The CY14B102L/CY14B102N  
software STORE cycle is initiated by executing sequential CE  
controlled read cycles from six specific address locations in  
exact order. During the STORE cycle an erase of the previous  
nonvolatile data is first performed, followed by a program of the  
nonvolatile elements. After a STORE cycle is initiated, further  
input and output are disabled until the cycle is completed.  
1. Read Address 0x4E38 Valid READ  
2. Read Address 0xB1C7 Valid READ  
3. Read Address 0x83E0 Valid READ  
4. Read Address 0x7C1F Valid READ  
5. Read Address 0x703F Valid READ  
6. Read Address 0x4C63 Initiate RECALL Cycle  
Because a sequence of READs from specific addresses is used  
for STORE initiation, it is important that no other read or write  
accesses intervene in the sequence, or the sequence is aborted  
and no STORE or RECALL takes place.  
Internally, RECALL is a two step procedure. First, the SRAM data  
is cleared; then, the nonvolatile information is transferred into the  
To initiate the software STORE cycle, the following read  
sequence must be performed.  
SRAM cells. After the t  
cycle time, the SRAM is again  
RECALL  
ready for read and write operations. The RECALL operation  
does not alter the data in the nonvolatile elements.  
1. Read Address 0x4E38 Valid READ  
2. Read Address 0xB1C7 Valid READ  
3. Read Address 0x83E0 Valid READ  
4. Read Address 0x7C1F Valid READ  
5. Read Address 0x703F Valid READ  
6. Read Address 0x8FC0 Initiate STORE Cycle  
Table 1. Mode Selection  
A
- A  
X
Mode  
IO  
Power  
Standby  
Active  
CE  
WE  
OE, BHE, BLE  
15  
0
H
X
X
Not Selected  
Read SRAM  
Write SRAM  
Output High Z  
Output Data  
Input Data  
L
L
L
H
L
L
X
L
X
X
Active  
[9, 10]  
H
0x4E38  
0xB1C7  
0x83E0  
0x7C1F  
0x703F  
0x8B45  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
AutoStore  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Active  
Disable  
Notes  
8. While there are 18 address lines on the CY14B102L (17 address lines on the CY14B102N), only the 13 address lines (A - A ) are used to control software modes.  
14  
2
Rest of the address lines are don’t care.  
9. The six consecutive address locations must be in the order listed. WE must be HIGH during all six cycles to enable a nonvolatile cycle.  
10. IO state depends on the state of OE, BHE, and BLE. The IO table shown assumes OE, BHE, and BLE LOW.  
Document #: 001-45754 Rev. *B  
Page 5 of 24  
 
       
PRELIMINARY  
CY14B102L, CY14B102N  
Table 1. Mode Selection (continued)  
[8]  
[3]  
A
- A  
Mode  
IO  
Power  
CE  
WE  
OE, BHE, BLE  
15  
0
[9, 10]  
L
H
L
0x4E38  
0xB1C7  
0x83E0  
0x7C1F  
0x703F  
0x4B46  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
AutoStore Enable  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Active  
L
L
H
H
L
L
0x4E38  
0xB1C7  
0x83E0  
0x7C1F  
0x703F  
0x8FC0  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Active I  
CC2  
Nonvolatile Store Output High Z  
[9, 10]  
0x4E38  
0xB1C7  
0x83E0  
0x7C1F  
0x703F  
0x4C63  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Nonvolatile  
Recall  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output High Z  
Active  
If the AutoStore function is disabled or re-enabled, a manual  
STORE operation (hardware or software) must be issued to save  
the AutoStore state through subsequent power down cycles. The  
part comes from the factory with AutoStore enabled.  
Preventing AutoStore  
The AutoStore function is disabled by initiating an AutoStore  
disable sequence. A sequence of read operations is performed  
in a manner similar to the software STORE initiation. To initiate  
the AutoStore disable sequence, the following sequence of CE  
controlled read operations must be performed:  
Data Protection  
The CY14B102L/CY14B102N protects data from corruption  
during low voltage conditions by inhibiting all externally initiated  
STORE and write operations. The low voltage condition is  
1. Read address 0x4E38 Valid READ  
2. Read address 0xB1C7 Valid READ  
3. Read address 0x83E0 Valid READ  
4. Read address 0x7C1F Valid READ  
5. Read address 0x703F Valid READ  
6. Read address 0x8B45 AutoStore Disable  
detected when V < V  
. If the CY14B102L/CY14B102N  
CC  
SWITCH  
is in a write mode (both CE and WE are LOW) at power up, after  
a RECALL or STORE, the write is inhibited until the SRAM is  
enabled after t  
(HSB to output active). This protects against  
LZHSB  
inadvertent writes during power up or brown out conditions.  
The AutoStore is re-enabled by initiating an AutoStore enable  
sequence. A sequence of read operations is performed in a  
manner similar to the software RECALL initiation. To initiate the  
AutoStore enable sequence, the following sequence of CE  
controlled read operations must be performed:  
Noise Considerations  
1. Read address 0x4E38 Valid READ  
2. Read address 0xB1C7 Valid READ  
3. Read address 0x83E0 Valid READ  
4. Read address 0x7C1F Valid READ  
5. Read address 0x703F Valid READ  
6. Read address 0x4B46 AutoStore Enable  
Document #: 001-45754 Rev. *B  
Page 6 of 24  
 
PRELIMINARY  
CY14B102L, CY14B102N  
Package Power Dissipation  
Maximum Ratings  
Capability (T = 25°C) ................................................... 1.0W  
A
Exceeding maximum ratings may impair the useful life of the  
device. These user guidelines are not tested.  
Surface Mount Pb Soldering  
Temperature (3 Seconds).......................................... +260°C  
Storage Temperature ................................. –65°C to +150°C  
Maximum Accumulated Storage Time  
DC Output Current (1 output at a time, 1s duration).... 15 mA  
Static Discharge Voltage.......................................... > 2001V  
(per MIL-STD-883, Method 3015)  
............At 150°C Ambient Temperature........................1000h  
............At 85°C Ambient Temperature..................... 20 Years  
Latch Up Current ................................................... > 200 mA  
Ambient Temperature with  
Power Applied ............................................ –55°C to +150°C  
Operating Range  
Range  
Commercial  
Industrial  
Ambient Temperature  
0°C to +70°C  
V
CC  
Supply Voltage on V Relative to GND ..........–0.5V to 4.1V  
CC  
2.7V to 3.6V  
2.7V to 3.6V  
2.7V to 3.6V  
Voltage Applied to Outputs  
in High-Z State.......................................0.5V to V + 0.5V  
–40°C to +85°C  
–40°C to +125°C  
CC  
Automotive  
Input Voltage...........................................–0.5V to Vcc + 0.5V  
Transient Voltage (<20 ns) on  
Any Pin to Ground Potential ..................2.0V to V + 2.0V  
CC  
DC Electrical Characteristics  
Over the Operating Range (V = 2.7V to 3.6V)  
CC  
Parameter  
Description  
Average V Current  
Test Conditions  
Min  
Max  
Unit  
I
t
t
t
= 20 ns  
= 25 ns  
= 45 ns  
Commercial  
Industrial  
65  
65  
50  
70  
70  
52  
mA  
mA  
mA  
mA  
mA  
mA  
CC1  
CC  
RC  
RC  
RC  
Values obtained without output loads (I  
= 0 mA)  
OUT  
t
t
= 25 ns  
= 45 ns  
Automotive  
90  
75  
mA  
mA  
RC  
RC  
Values obtained without output loads (I  
= 0 mA)  
= 0 mA).  
OUT  
I
I
Average V Current All Inputs Don’t Care, V = Max  
Average current for duration t  
AverageV Currentat All I/P cycling at CMOS levels.  
10  
35  
mA  
mA  
CC2  
CC  
CC  
during STORE  
STORE  
CC3  
CC  
t
= 200 ns, 3V, 25°C Values obtained without output loads (I  
RC  
OUT  
typical  
I
I
Average V  
Current All Inputs Don’t Care, V = Max  
5
5
mA  
mA  
CC4  
CAP  
CC  
during AutoStore Cycle Average current for duration t  
STORE  
V
Standby Current CE > (V – 0.2). All others V < 0.2V or > (V – 0.2V). Standby  
SB  
CC  
CC IN CC  
current level after nonvolatile cycle is complete.  
Inputs are static. f = 0 MHz.  
I
Input Leakage Current V = Max, V < V < V  
(except HSB)  
Input Leakage Current V = Max, V < V < V  
(for HSB)  
Off-State Output  
Leakage Current  
Input HIGH Voltage  
–1  
–100  
–1  
+1  
+1  
+1  
μA  
μA  
μA  
V
IX  
CC  
SS  
IN  
CC  
CC  
SS  
IN  
CC  
I
V
= Max, V < V  
< V , CE or OE > V or BHE/BLE > V  
IH  
OZ  
CC  
SS  
OUT  
CC  
IH  
or WE < V  
IL  
V
2.0  
V
+
IH  
CC  
0.5  
V
V
V
V
Input LOW Voltage  
Output HIGH Voltage  
Output LOW Voltage  
Storage Capacitor  
V
– 0.5  
0.8  
V
V
V
IL  
ss  
I
I
= –2 mA  
= 4 mA  
2.4  
61  
OH  
OL  
OUT  
OUT  
0.4  
180  
Between V  
pin and V , 5V Rated  
μF  
CAP  
CAP  
SS  
Notes  
11. Typical conditions for the active current shown on the DC Electrical characteristics are average values at 25°C (room temperature), and V = 3V. Not 100% tested.  
CC  
12. The HSB pin has I  
= -2 uA for V of 2.4V when both active HIGH and LOW drivers are disabled. When they are enabled standard V and V are valid. This  
OUT  
O
H
O
H
O
L
parameter is characterized but not tested.  
13. V (Storage capacitor) nominal value is 68uF.  
CAP  
Document #: 001-45754 Rev. *B  
Page 7 of 24  
 
       
PRELIMINARY  
CY14B102L, CY14B102N  
Data Retention and Endurance  
Parameter  
Description  
Min  
20  
Unit  
Years  
K
DATA  
Data Retention  
R
NV  
Nonvolatile STORE Operations  
200  
C
Capacitance  
In the following table, the capacitance parameters are listed.  
Parameter Description  
Input Capacitance  
Output Capacitance  
Test Conditions  
Max  
7
Unit  
C
C
T = 25°C, f = 1 MHz,  
pF  
pF  
IN  
A
V
= 0 to 3.0V  
CC  
7
OUT  
Thermal Resistance  
In the following table, the thermal resistance parameters are listed.  
Parameter  
Description  
Test Conditions  
Test conditions follow standard test methods  
48-FBGA 44-TSOP II 54-TSOP II Unit  
ΘJA  
Thermal Resistance  
(Junction to Ambient) and procedures for measuring thermal  
28.82  
31.11  
30.73  
°C/W  
impedance, in accordance with EIA/JESD51.  
ΘJC  
Thermal Resistance  
(Junction to Case)  
7.84  
5.56  
6.08  
°C/W  
Figure 5. AC Test Loads  
577Ω  
R1  
for tri-state specs  
577Ω  
3.0V  
OUTPUT  
3.0V  
OUTPUT  
R1  
R2  
789Ω  
R2  
789Ω  
5 pF  
30 pF  
AC Test Conditions  
Input Pulse Levels.................................................... 0V to 3V  
Input Rise and Fall Times (10% - 90%)........................ <3 ns  
Input and Output Timing Reference Levels.................... 1.5V  
Note  
14. These parameters are guaranteed but not tested.  
Document #: 001-45754 Rev. *B  
Page 8 of 24  
 
 
PRELIMINARY  
CY14B102L, CY14B102N  
AC Switching Characteristics  
Parameters  
20 ns  
25 ns  
45 ns  
Description  
Unit  
Cypress  
Alt  
Min  
Max  
Min  
Max  
Min  
Max  
Parameters Parameters  
SRAM Read Cycle  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Chip Enable Access Time  
Read Cycle Time  
20  
25  
45  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ACE  
RC  
ACS  
RC  
AA  
20  
25  
45  
Address Access Time  
20  
10  
25  
12  
45  
20  
AA  
Output Enable to Data Valid  
Output Hold After Address Change  
Chip Enable to Output Active  
Chip Disable to Output Inactive  
Output Enable to Output Active  
Output Disable to Output Inactive  
Chip Enable to Power Active  
Chip Disable to Power Standby  
Byte Enable to Data Valid  
DOE  
OHA  
OE  
OH  
LZ  
3
3
3
3
3
3
LZCE  
8
8
10  
10  
15  
15  
HZCE  
HZ  
0
0
0
0
0
0
LZOE  
OLZ  
OHZ  
PA  
HZOE  
PU  
PD  
20  
10  
25  
12  
45  
20  
PS  
-
-
-
DBE  
Byte Enable to Output Active  
Byte Disable to Output Inactive  
0
0
0
LZBE  
HZBE  
8
10  
15  
SRAM Write Cycle  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Write Cycle Time  
20  
15  
15  
8
25  
20  
20  
10  
0
45  
30  
30  
15  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
WC  
PWE  
SCE  
SD  
WC  
WP  
CW  
DW  
DH  
Write Pulse Width  
Chip Enable To End of Write  
Data Setup to End of Write  
Data Hold After End of Write  
Address Setup to End of Write  
Address Setup to Start of Write  
Address Hold After End of Write  
Write Enable to Output Disable  
Output Active after End of Write  
Byte Enable to End of Write  
0
HD  
15  
0
20  
0
30  
0
AW  
AW  
AS  
SA  
0
0
0
HA  
WR  
WZ  
OW  
[17,18]  
8
10  
15  
HZWE  
3
3
3
LZWE  
BW  
-
15  
20  
30  
Switching Waveforms  
[15, 16, 19]  
Figure 6. SRAM Read Cycle #1: Address Controlled  
W5&  
$GGUHVV  
$GGUHVVꢀ9DOLG  
W$$  
2XWSXWꢀ'DWDꢀ9DOLG  
3UHYLRXVꢀ'DWDꢀ9DOLG  
W2+$  
'DWDꢀ2XWSXW  
Notes  
15. WE must be HIGH during SRAM read cycles.  
16. Device is continuously selected with CE, OE and BHE / BLE LOW.  
17. Measured ±200 mV from steady state output voltage.  
18. If WE is LOW when CE goes LOW, the outputs remain in the high impedance state.  
19. HSB must remain HIGH during READ and WRITE cycles.  
Document #: 001-45754 Rev. *B  
Page 9 of 24  
 
         
PRELIMINARY  
CY14B102L, CY14B102N  
Figure 7. SRAM Read Cycle #2: CE and OE Controlled  
$GGUHVV  
&(  
$GGUHVVꢀ9DOLG  
W5&  
W+=&(  
W$&(  
W$$  
W/=&(  
W+=2(  
W'2(  
2(  
W+=%(  
W/=2(  
W'%(  
%+(ꢍꢀ%/(  
W/=%(  
+LJKꢀ,PSHGDQFH  
'DWDꢀ2XWSXW  
2XWSXWꢀ'DWDꢀ9DOLG  
W38  
W3'  
$FWLYH  
,
6WDQGE\  
&&  
Figure 8. SRAM Write Cycle #1: WE Controlled  
W:&  
$GGUHVV  
$GGUHVVꢀ9DOLG  
W6&(  
W+$  
&(  
W%:  
%+(ꢍꢀ%/(  
W$:  
W3:(  
:(  
'DWDꢀ,QSXW  
'DWDꢀ2XWSXW  
W6$  
W+'  
W6'  
,QSXWꢀ'DWDꢀ9DOLG  
W/=:(  
W+=:(  
+LJKꢀ,PSHGDQFH  
3UHYLRXVꢀ'DWD  
Notes  
20. CE or WE must be >V during address transitions.  
IH  
Document #: 001-45754 Rev. *B  
Page 10 of 24  
 
 
PRELIMINARY  
CY14B102L, CY14B102N  
Figure 9. SRAM Write Cycle #2: CE Controlled  
W:&  
$GGUHVV  
&(  
$GGUHVVꢀ9DOLG  
W6&(  
W6$  
W+$  
W%:  
%+(ꢍꢀ%/(  
:(  
W$:  
W3:(  
W6'  
W+'  
'DWDꢀ,QSXW  
,QSXWꢀ'DWDꢀ9DOLG  
+LJKꢀ,PSHGDQFH  
'DWDꢀ2XWSXW  
Figure 10. SRAM Write Cycle #3: BHE and BLE Controlled  
W:&  
$GGUHVV  
&(  
$GGUHVVꢀ9DOLG  
W6&(  
W6$  
W+$  
W%:  
%+(ꢍꢀ%/(  
:(  
W$:  
W3:(  
W6'  
W+'  
'DWDꢀ,QSXW  
,QSXWꢀ'DWDꢀ9DOLG  
+LJKꢀ,PSHGDQFH  
'DWDꢀ2XWSXW  
Document #: 001-45754 Rev. *B  
Page 11 of 24  
 
PRELIMINARY  
CY14B102L, CY14B102N  
AutoStore/Power Up RECALL  
20 ns  
25 ns  
45 ns  
Parameters  
Description  
Unit  
Min  
Max  
20  
Min  
Max  
20  
Min  
Max  
20  
t
t
t
Power Up RECALL Duration  
STORE Cycle Duration  
ms  
ms  
ns  
V
HRECALL  
8
8
8
STORE  
DELAY  
Time Allowed to Complete SRAM Cycle  
Low Voltage Trigger Level  
VCC Rise Time  
20  
25  
25  
V
t
2.65  
2.65  
2.65  
SWITCH  
150  
150  
150  
μs  
V
VCCRISE  
V
HSB Output Driver Disable Voltage  
HSB To Output Active Time  
HSB High Active Time  
1.9  
5
1.9  
5
1.9  
5
HDIS  
LZHSB  
HHHD  
t
t
μs  
ns  
500  
500  
500  
Switching Waveforms  
Figure 11. AutoStore or Power Up RECALL  
96:,7&+  
9+',6  
1RWHꢁꢁ  
1RWHꢁꢁ  
99&&5,6(  
W6725(  
W6725(  
1RWHꢁꢉ  
W+++'  
W+++'  
+6%ꢀ287  
$XWRVWRUH  
W'(/$<  
W/=+6%  
W/=+6%  
W'(/$<  
32:(5ꢋ  
83  
5(&$//  
W+5(&$//  
W+5(&$//  
5HDGꢀ ꢀ:ULWH  
,QKLELWHG  
5:,ꢏ  
5HDGꢀ ꢀ:ULWH  
5HDGꢀ ꢀ:ULWH  
32:(5ꢋ83  
5(&$//  
%52:1  
287  
$XWRVWRUH  
32:(5  
'2:1  
$XWRVWRUH  
32:(5ꢋ83  
5(&$//  
Notes  
21. t  
starts from the time V rises above V  
SWITCH.  
HRECALL  
CC  
22. If an SRAM write has not taken place since the last nonvolatile cycle, no AutoStore or Hardware Store takes place.  
23. On a Hardware STORE, Software Store / Recall, AutoStore Enable / Disable and AutoStore initiation, SRAM operation continues to be enabled for time t  
.
DELAY  
24. Read and Write cycles are ignored during STORE, RECALL, and while VCC is below V  
SWITCH.  
25. HSB pin is driven HIGH to VCC only by internal 100kOhm resistor, HSB driver is disabled.  
Document #: 001-45754 Rev. *B  
Page 12 of 24